来源:量子位
作者:李根
「我们要造新灯塔,照亮新航道。」
这是清华大学人工智能研究院院长、中国科学院院士张钹教授,对任正非把基础研究比喻为灯塔的回应。
也是张钹教授给当前人工智能发展提出的新思路,因为新灯塔和新航道,正是他反复强调的第三代人工智能。
在纪念《中国科学》创刊70周年的专刊中,张钹教授以通信作者发出《迈向第三代人工智能》文章,指出是时候把第一代的知识驱动和第二代的数据驱动结合起来,通过利用知识、数据、算法和算力等 4 个要素,构造更强大的人工智能。
而在量子位的采访中,张钹教授进一步解释了发展第三代人工智能的重要性、紧迫性,特别是当前在基础科研方面遭遇“卡脖子”的中国。
张钹教授还进一步指出了基础科研和教育中的关键挑战。不仅有国家院士的忧思,还包含了对于人才培养制度的积利除弊,每一个思考都振聋发聩。
为了更加完整展现张钹教授思考,我们以第一人称方式呈现本次采访,内容在不更改原意的基础上,进行了编辑。方便阅读的小标题,亦为后添加。
以下是全文:
现在最关键是对AI发展现状的正确评估
为什么讲第三代AI?因为中国有历史性机遇
解决卡脖子就得“相互依赖”
冲击AI无人区,比搞两弹还难
我们该造新灯塔,照亮新航道
科研必须高举开放和国际化
第三代AI当前关键问题是算法
发展第三代人工智能,依靠知识、数据、算法和算力四个要素,这四个要素是什么关系?
发展第三代AI依靠的是两项资源,即知识和数据,通过算法与算力把这两个资源利用起来。知识、数据和算力资源我们都还可以。
而关键的问题是算法,因为目前所有原始的AI算法都是外国人弄的,算法从哪里来?从基础研究中来,因此发展第三代AI首先要抓基础研究。清华大学人工智能研究院在算法研究上取得一些进展,我们发布了“珠算”概率编程库,这是一个开源算法平台,其中有我们设计的新算法。
我反复强调要抓住这个处于同一起跑线的机会,多做出成绩,把生态建立起来,就不怕别人卡脖子,也有了话语权。
之前几年,大家对深度学习都很乐观,我讲的内容可能不容易被接受,现在慢慢很多人都能接受了。
因为多数人没有经历过AI发展的全过程,没有看到“全貌”,只是看到其中很小的一部分,因此很难看清楚。
我们从1978年就开始从事人工智能研究,经历过70年代到80年代的高潮,也体会到90年代的低谷,再到现在的重新高潮,经过40多年的风雨,才逐步搞清楚AI的目标是什么,我们现在离目标还有多远等等。
符号主义虽然不成功,但它涉及到人工智能的核心问题。
深度学习尽管最初受神经科学的启发,但是后来发展出来的一套算法,完全是基于概率统计的传统信息处理方法,其所以获得成功,关键在于计算机算力的提高。现在大家把深度学习的所有功劳都归于人工智能,这其实是错觉。
大家应该注意到,第三代人工智能我们是把知识放在第一位,数据放在第二,算法放在第三位,算力放在最后,这个排序是经过仔细琢磨,不是随便排的。主要是强调“知识”在发展人工智能中的重要性。
网络时代数据量指数增长,计算机处理数据的能力远比人类强,所以将知识处理与数据处理结合起来,可以发挥人类与机器的共同作用。
最后,解决了资源问题,现在要回到利用资源的方法,即需要有好的算法。目前针对数据的算法比较多,知识处理的算法则很少,所以在我们研究院专门成立了一个叫知识智能的研究中心,就是想通过它加强处理知识的研究。目前在我国研究知识驱动方法的人很少,是我们的短板。以2018年国际人工智能联合大会(IJCAI)上发表的主要论文来看,与机器学习有关的论文,中国人发表的论文占70%左右,而与知识处理有关的论文,几乎没有我们的文章。我们建立的通用知识库也远比美国少。
基础科研需要全社会的生态
“馊主意”也比没主意好
我常常给学生开玩笑说,我不怕馊主意就怕大家没主意。
因为没主意就等于0,没有任何东西。而“馊主意”?如果有些合理成分,那怕0.1合理,自然比“0”主意好。即使“馊主意”不合理,比如是个“负值”,总之有个值,我们可以从中汲取教训,也比没主意强。我们现在的问题是,要求大家都要发表“正确”(共识)的好意见,不大允许发表“不正确”(没有共识)的“馊”意见。
清华目前培养的学生(包括博士生)个个都很优秀,平均水平很高,与国际一流大学,如MIT等学校的水平差不多。差距在于我们的最高水平与国际差距很大,即缺乏出类拔萃的人才。我们教师队伍也存在类似现象,即平均水平不错,但缺乏国际级的大师。
科学研究的水平往往取决于它的最高水平,跟木桶效应正好相反。
所以问题就变成了:我们为什么出不了最高水平?
这个问题往深了讲是另一个话题,今天不展开了。
当然这个问题也不能操之过急,跟我们国家的发展阶段有关系,需要有个过程,需要我们国家实现全面的现代化。
基础科研不光要允许失败,还要经得起失败
对学生的培养来讲,提出问题能力比解决问题能力的培养更加重要。
我们之前人才培养不足的地方是,只重视培养解决问题的能力。
我们培养博士生,主要要求他们独立提出一个具有挑战性的问题,然后去解决这个问题,这样才算完成博士生的培养。问题的挑战性越大,完成博士论文的水平越可能高,但风险也越大。目前大多数学生都愿意做风险低的课题,当然完成的论文质量就不会很高
产生这个现象主要原因是,担心一旦失败了后果很严重,就再也爬不起来了。
换句话讲,我们还没有建立起一个“经得起失败”的完善科研生态系统,让“失败者”在失败之后还能够有重新爬起来继续前进的机会,有了这种生态,才会有更多的人去闯无人区,参与风险和困难很大的问题的探索。
欢迎关注
科普辽宁喜欢此内容的人还喜欢
原标题:《院士说丨张钹院士:基础科研不光要允许失败,还要经得起失败,“馊主意”也比没主意好》
阅读原文